SMART Photonics

ENABLING THE FUTURE

October, 2018
INTRODUCTION TO SMART PHOTONICS
SMART PHOTONICS

- Founded in 2012
 - Pure Play InP Foundry
 - Started with 3 FTE using the NanoLab@TU/e

 Philips
 OppoElectronics Center

 JDS Uniphase

 Cedova

 Philips Research - Photonics Lab

 Generic Integration Technology by TU/e

 SMART Photonics

- Today
 - R&D at NanoLab@TU/e
 - Production at SMART@HTC
 - Staff of >50 FTE
 - >35 very experienced engineers
 - Serving >30 customers
OFFERING

- Manufacturer of photonic components on InP
 - Discrete components (lasers, receivers, amplifiers)
 - Photonic Integrated Circuits (PICs)

- Uniqueness
 - A proven business model “Pure Play Foundry”
 - To meet cost requirements (€/bit and €/mm²)
 - A unique technology for integrating photonic components
 - To meet technology requirements (Gb/s, J/bit and more functionality/mm²)
 - More functionality in one chip and Improved performance
CAPABILITIES

<table>
<thead>
<tr>
<th>Epitaxy</th>
<th>2 (3) Multi-wafer MOVPE reactors for base wafer growth, regrowth and overgrowth</th>
</tr>
</thead>
</table>
| **Lithography** | High throughput, high resolution (<100 nm) - **ArF scanner**
0.6 μm projection litho – **I-Line stepper**
High resolution (<100 nm) – **E-beam**
0.6 μm contact litho – contact aligner |
| **Etching** | Cassette-based wet etching
ICP for single and multi-wafer etching
RIE dedicated tools for photoresist, dielectric and polymer etching |
| **Dielectrics** | PECVD for SiO$_x$ and SiN$_x$ |
| **Metallization** | E-beam evaporation
Sputtering
Plating |
| **Back-end** | Grinding and polishing
Scribe and break
Optical coatings |
SMART INTEGRATION ON INP
RESULT OF 20 YEARS DEVELOPMENT AT TU-EINDHOVEN

- Founding father
 - Professor Meint Smit
 - €300M invested

- Monolithic integration of all photonic functionalities

Passive waveguides Phase modulators gratings (development) Amplifiers/ laser gain section
GENERIC INTEGRATION PHILOSOPHY

Electronic integration
3 basic elements

Photonic integration
3 basic elements

- PWD
- PHM
- SOA

Waveguide
Phase
Amplitude
SAME BUILDING BLOCK PRINCIPLE AS LEGO
MPW SERVICES

- World’s first commercial run July 2013
- Complex designs
- Over 250 designs fabricated Ytd
- Multiple applications a.o. communication and sensing
- > 50% Industry
LOW THRESHOLD ACCESS

- Access via MPW shuttles
 - Low cost access (multiple users/wafer)
 - Regularly (quarterly) MPW runs
 - Fixed leadtime (4 months)
- Design kit (PDK) available
 - PDK for mask design implemented
 - Extended design manual
 - Functional building block descriptions
 - Design support
 - Training for new designers
CUSTOMER APPLICATIONS

▪ Tele- and Data communications
 ▪ Long Haul
 ▪ Access
 ▪ DC

▪ Sensing
 ▪ Internet of Things (IoT)
 ▪ Health (POC)
 ▪ Automotive (LIDAR)
 ▪ Aviation and Space (Safety, Communication, Analysis)
 ▪ Machining (Accuracy, measuring, safety)
PICS IN THE INTERNET

Fiber-optic links

Photonic Integrated Circuits
PICS FOR TELE-DATA COMMUNICATIONS

>100 Gb/s transmitter on single chip, fabricated in our powerful MPW platform

Wavelength tuning

20 Gb/s per channel

3 x MZM modulator

6 x 22 nm tunable laser

3 x MZM modulator

W. Yao, COBRA
PICS FOR SENSING

- Disruptive solutions in ao. Sensing
 - Health and medical
 - Automotive
 - Aviation
 - Aerospace
 - Machinery
PICS IN NON-TELECOM APPLICATIONS

- Compact Frequency-comb generators for metrology
- Readout units for fibre strain sensors
- Skin Analysis
- Optical Coherence Tomography
EXAMPLE 1: FBG INTERROGATOR

Distributed temperature and strain measurement with embedded fibers + PIC readouts

Wider possibilities for structural health monitoring
EXAMPLE 2: GAS SENSING

- 36 mm(!) cavity
- Optical spectrum: distinct peaks spaced 2.5GHz.
- Electrical spectrum: mode-locking to a frequency of 2.5 GHz

Design and analysis by COBRA: Saeed Tahvili and Sylwester Latkowski
INDUSTRIALISATION AND RAMP-UP PROGRAM
ROAD TOWARDS VOLUME PRODUCTION

2012
Start-up

2015
Start Production at HTC

2017
Expanding toolbase

2018-2019
Expanding HTC cleanroom and toolbase

2018-2020
New factory

Getting started at 2”-wafers

Capacity 500 3”-Wafers / Year

Capacity increase >4000 3”-wafers / Year

Capacity increase >20000 4” (6”)-wafers / Year
PHASE 2

- **New Fab**
 - Increase process flow to 100% on own equipment
 - Increase Capacity to >20K wfrs/yr
- **Fab specifics**
 - Footprint 5700m²
 - Production 2000m²
 - Wafer size 4” (6” capable)
 - Capacity >20K wfrs/yr
 - Feature size <100nm (ArF)
 - Operational July 2020